Ari Usman Chaniago
Berbagi itu Indah
Ditulis Oleh : ROMI SATRIA WAHONO ON 18 JUN, 2012
ariusman.id – Dalam membuat penelitian kadang mahasiswa tidak suka membaca pedoman penulisan, yang ada mahasiswa hanya membaca penelitian kakak kelas, dan memiripkan format penulisan kakak kelas dengan yang dia miliki. Akhirnya jika salah yang dibuat kakak kelas maka salah semua yang ditulis ulang.
Artikel ini saya posting ulang karena penjelasan dari Pak Romi Satrio Wahono sangat mudah dicerna, kalau baca buku lagi mungkin kita akan berpikir panjang bagaimana cara membuat laporan penelitian yang ditugaskan. Maka artikel Pak Romi saya posting ulang walau beliau buat tahun 2012. Tujuannya saya bisa menyebarkan informasi ini kepada mahasiswa atau orang yang membutuhkan keterangan dalam pembuatan latar belakang masalah.
Saya doakan Pak Romi panjang umur dan terus memberikan manfaat dalam tulisan dan hasil penelitiannya. ini juga merupakan amal jariyah dari beliau. selamat mengikuti setiap tulisan beliau. setelah ini saya akan posting apa itu Rumusan Masalah,Tujuan dan Manfaat Penelitian. Selamat menikmati tulisan yang gurih ini.
Ari Usman Chaniago (Berbagi itu Indah)
Latar belakang masalah penelitian (research background) adalah bagian pertama dan sangat penting dalam menyusun tulisan ilmiah, baik dalam bentuk paper atau tesis. Latar belakang masalah penelitian menjelaskan secara lengkap topik (subject area) penelitian, masalah penelitian yang kita pilih dan mengapa melakukan penelitian pada topik dan masalah tersebut (Berndtsson et al., 2008). Sayangnya, tidak banyak mahasiswa yang berhasil membuat latar belakang masalah penelitian dengan baik, sebagian karena masalah penelitiannya memang tidak jelas dan mengada-ada, sebagian lagi karena copy-paste sana sini sehingga alur paragrafnya menjadi kacau, dan sebagian lagi karena gagal melandasi alasan melakukan penelitian itu (males baca literatur). Saya coba membuat tulisan ini, khususnya untuk mempermudah mahasiswa bimbingan saya di bidang komputer (computing), yang sering galau dalam membuat latar belakang masalah pada tesis mereka :).
Sebelumnya perlu dipahami bahwa gaya penelitian di bidang komputer (computing) secara umum terbagi dua yaitu gaya Computer Science (CS) dan gaya Information Systems (IS) (Berndtsson et al., 2008). CS memiliki karakteristik penelitian dan isu berhubungan dengan core technology dan perbaikan metode (method improvement). Sedangkan penelitian IS lebih cenderung ke arah isu tentang interaksi teknologi dan sosial, termasuk diantaranya mengukur dan menganalisa kesuksesan penerapan teknologi dan sistem informasi. Tulisan kali ini akan lebih cenderung ke alur latar belakang masalah penelitian bergaya CS, meskipun tetap bisa digunakan untuk penelitian IS.
Latar belakang masalah penelitian akan menjawab semua pertanyaan MENGAPA (WHY) dari judul penelitian kita. Untuk mempermudah penjelasan, saya akan gunakan, terjemahkan dan revisi paper penelitian (Fei et al, 2008) untuk contoh paper yang kita bahas. Karena judul penelitiannya adalah Prediksi Produksi Padi dengan menggunakan Support Vector Machine berbasis Particle Swarm Optimization, maka latar belakang masalah harus bisa menjawab pertanyaan:
Bagaimana cara menguraikan jawaban dari pertanyaan 1-4, akan disajikan dalam contoh latar belakang masalah di bawah.
Kunci dari keberhasilan menyusun latar belakang masalah penelitian seberapa komprehensif kita merangkumkan penelitian kita. Tulisan yang baik adalah bahwa dengan hanya membaca latar belakang masalah, orang langsung bisa memahami, apa yang kita lakukan pada penelitian kita. Untuk bisa mencapai itu, pokok pikiran seluruh paragraf pada latar belakang masalah penelitian harus memuat dan mengikuti 6 pola alur berikut. Untuk mempermudah mengingat, saya biasanya menggunakan singkatan OMKKMASASOLTU.
Contoh penerapan pola OMKKMASASOLTU ini, akan cepat dipahami melalui contoh latar belakang masalah yang saya uraikan di bawah.
Cara paling cepat dan manjur supaya kita mahir menulis paper ilmiah dan tesis adalah dengan melakukan ATM (Amati-Tiru-Modifikasi). Banyak baca paper, lihat bagaimana para peneliti menuliskan hasil penelitian mereka, tiru alurnya tapi tidak nyontek kalimatnya, dan modifikasi pelan-pelan di tulisan yang kita buat. Jangan lupa memilih paper yang dipublikasikan di journal yang berkualitas, karena sudah menjadi rule-of-thumb dalam dunia penelitian bahwa 80-90% paper ilmiah di dunia ini disajikan dengan buruk. Paling tidak supaya tidak tersesat dalam studi literatur, patokan paper yang berkualitas adalah masuk di journal yang terindeks oleh ISI atau SCOPUS, dan memiliki nilai skor yang tinggi untuk penghitungan Journal Impact Factor, Eigenfactor Score, Scimago Journal Rank, atau Source Normalized Impact per Paper. Journal ilmiah di Indonesia untuk bidang computing yang masuk kriteria ini, hanya Telkomnika yang diasuh mas Tole Sutikno cs dari Universitas Ahmad Dahlan Yogyakarta, karena sudah mulai terindeks oleh SCOPUS.
Sebagai contoh, perhatikan latar belakang masalah pada tulisan berikut ini. Untuk mempermudah memahami penjelasan, (warna biru) saya berikan untuk memberi petunjuk bahwa paper tersebut menjawab pertanyaan why di judul sesuai dengan KIAT 2, dan [warna merah] saya berikan untuk memberi penjelasan bagaimana paragraf mengikuti alur dan pokok pikiran paragraf yang ada di KIAT 3. Perhatikan juga bahwa setiap kalimat yang mengandung jawaban dari pertanyaan why atau berupa klaim dan definisi, harus merujuk atau melakukan sitasi (citation) ke literatur sebagai landasan dari klaim yang dilakukan. Daftar referensi dari paper (Fei et al., 2009) tidak saya tampilkan, karena poin penting yang ingin saya sampaikan adalah masalah bagaimana alur kalimat dan paragrafnya.
Prediksi Produksi Padi dengan menggunakan Support Vector Machine berbasis Particle Swarm Optimization
Latar Belakang Masalah
Padi adalah komoditas yang penting di china, karena tingkat produksinya tinggi (FAO Report, 2009) (1. mengapa padi?). Produksi padi perlu diprediksi dengan akurat, karena hasil prediksi yang akurat sangat penting untuk membuat kebijakan nasional (Traill, 2008) (2. mengapa prediksi produksi padi?). [1. obyek penelitian]
Metode prediksi rentet waktu seperti Support Vector Machine (SVM) (Yongsheng, 2008), Neural Network (NN) (Tseng, 2007) dan Grey Model (GM) (Wu, 2007) diusulkan oleh banyak peneliti (Huifei, 2009) untuk prediksi produksi padi. [2. metode-metode yang ada]
NN memiliki kelebihan pada prediksi nonlinear, kuat di parallel processing dan kemampuan untuk mentoleransi kesalahan, tapi memiliki kelemahan pada perlunya data training yang besar, over-fitting, lambatnya konvergensi, dan sifatnya yang local optimum (Rosario, 2007). GM punya kelebihan di tingginya akurasi prediksi meskipun menggunakan data yang sedikit, akan tetapi GM memiliki kelemahan pada prediksi data yang sifatnya naik turun secara fluktuatif seperti pada data produksi padi (Wu, 2007). [3. kelebihan dan kelemahan metode yang ada]
SVM dapat memecahkan masalah NN dan GM, yaitu over-fitting, lambatnya konvergensi, dan sedikitnya data training (Vapnik, 2005), yang mana ini tepat untuk karakteristik data produksi padi pada penelitian ini (3. mengapa support vector machine?). Tetapi SVM memiliki kelemahan pada sulitnya pemilihan parameter SVM yang optimal (Coussement, 2008). [4. masalah pada metode yang dipilih]
Particle Swarm Optimization (PSO) adalah metode optimisasi yang terbukti efektif digunakan untuk memecahkan masalah optimisasi multidimensi dan multiparameter pada pembelajaran pada machine learning seperti di NN, SVM, dan classifier lain (Brits, 2009) (4. mengapa particle swarm optimization?). [5. solusi perbaikan metode]
Pada penelitian ini PSO akan diterapkan untuk pemilihan parameter SVM yang sesuai dan optimal, sehingga hasil prediksi lebih akurat. [6. rangkuman tujuan penelitian]
Ketika kita telah berhasil menyusun latar belakang masalah yang baik seperti di atas, masalah dan tujuan penelitian sudah pasti dapat kita rangkumkan dengan baik. Di Indonesia masalah penelitian, biasanya dirangkumkan dalam format identifikasi masalah (problem statement) dan rumusan masalah (research question). Jadi sebagai kelanjutan dari latar belakang masalah di atas, kita bisa rangkumkan masalah dan tujuan penelitian sebagai berikut:
Masalah Penelitian (Problem Statement atau Research Problem):
SVM adalah algoritma yang memiliki performa sangat baik untuk prediksi rentet waktu, karena dapat memecahkan masalah over-fitting, lambatnya konvergensi, dan sedikitnya data training. Tetapi SVM memiliki kelemahan pada sulitnya pemilihan parameter yang optimal karena harus dilakukan secara trial and error, sehingga menyebabkan tingkat akurasi prediksi menjadi rendah
Pertanyaan Penelitian (Research Question):
Seberapa tinggi akurasi metode SVM apabila PSO diterapkan pada proses pemilihan parameter yang optimal?
Alternatif research question lain yang bisa digunakan adalah seperti di bawah:
Tujuan Penelitian (Research Objective):
Menerapkan PSO untuk pemilihan parameter yang optimal pada SVM, sehingga dapat meningkatkan akurasi hasil prediksi
KIAT 5 mengakhiri artikel ini, dan saya ucapkan selamat apabila artikel saya berhasil mengubah anda menjadi mahasiswa yang tidak galau lagi :). Kalaupun tetap masih bingung, atau terlanda masalah lain dan ingin berdiskusi lebih lanjut, silakan bergabung ke grup penelitian saya di facebook Intelligent Systems Research Center. Paper (Fei et al., 2009) juga bisa didownload di halaman grup tersebut. Khusus untuk mahasiswa yang merasa masih fakir ilmu, sebelum mengirim pertanyaan, silakan terlebih dulu mendownload dan membaca semua materi kuliah saya yang tersedia di halaman Lectures. Welcome to the jungle!
REFERENSI